

Quantum Dot On-Chip Lasers

Gerald Shafer, Rey Vega, Tatiana Velasquez and Thy Nguyen

> Mentor: Jennifer Selvidge Advisor: John Bowers

Optoelectronics Research Group

CSEP CENTER FOR SCIENCE AND ENGINEERING PARTNERSHIPS

Current Situation and Problems

- Electronics traditionally use metal wires on silicon chips
- Using only silicon and metals in circuits is limiting
- Improvements we can make with on chip quantum dot lasers:
 - **1**. Cost efficiency
 - 2. Data Flow
 - 3. Eco-friendly

Common Applications: Solar Panels, LEDs, and lasers

Background

- Quantum dots and silicon used in tandem create and carry light to send data in photonic integrated circuits
- Compound semiconductors are good light emitters

Process Flow

Unprocessed Silicon Chip

Laser quality GaAs grown in trenches

Using acids etch trenches in silicon chip

Quantum Dots grown on GaAs in trenches

Wet Etching the Chip

- Need a clean environment
- Pristine chip needed
- Cleaned with Potassium Hydroxide
- Hydroflouric acid etches the Silicon

Scanning Electron Microscope (SEM)

- Sample is in a vacuum
- electrons hit the substrate
- the special detector interprets the scattered electrons into an image

SEM of Chip

- •Edge of our chip
- each trench is roughly .1 microns wide

Atomic Force Microscopy (AFM)

- Measures the difference in force
- Difference in force translated into difference in height

Filling the trenches

- Gallium Arsenide grown in Silicon trenches
- Need GaAs to grow the dots on

Growing Quantum Dots

- Grown layer by layer
- Time, Temperature, and Pressure
- Size determines wavelength

Compound quantum dots through thin film growth

AFM image of quantum dots All of similar size→ all of similar emission wavelength few large dots→ defects later processing will remove

Photoluminescence Spectroscopy (PL)

•To measure emission wavelength

•Shine high energy laser on light emitting sample

•Sample absorbs and re-emits light at its characteristic wavelength

Photodetector measures emission intensity and wavelength

 Desired wavelength for telecom: 1300 nm

• Current wavelength: 1275 nm

Gallium Arsenide QD

Conclusion

- Gallium Arsenide quantum dot growing process is still being modified
- 1300 nm (infrared)
- Reliable and Replicable results are needed

Other Possible Applications by sponsors

 Military technology often requires large processing power

benefit with better energy efficiency

Acknowledgments

<u>Thank you:</u> Jennifer Selvidge Anchal Agarwal Ellie Sciaky Jens-Uwe Kuhn

